Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa).

Identifieur interne : 002B51 ( Main/Exploration ); précédent : 002B50; suivant : 002B52

Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa).

Auteurs : Guohua Chai [République populaire de Chine] ; Ruibo Hu ; Dongyuan Zhang ; Guang Qi ; Ran Zuo ; Yingping Cao ; Peng Chen ; Yingzhen Kong ; Gongke Zhou

Source :

RBID : pubmed:22708723

Descripteurs français

English descriptors

Abstract

BACKGROUND

CCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date.

RESULTS

In the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X(11)-C-X(6)-C-X(3)-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and responses to drought stress treatment of 12 selected Populus CCCH genes.

CONCLUSIONS

This study provides the first systematic analysis of the Populus CCCH proteins. Comprehensive genomic analyses suggested that segmental duplications contribute significantly to the expansion of Populus CCCH gene family. Transcriptome profiling provides first insights into the functional divergences among members of Populus CCCH gene family. Particularly, some CCCH genes may be involved in wood development while others in drought tolerance regulation. Our results presented here may provide a starting point for the functional dissection of this family of potential RNA-binding proteins.


DOI: 10.1186/1471-2164-13-253
PubMed: 22708723
PubMed Central: PMC3427045


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa).</title>
<author>
<name sortKey="Chai, Guohua" sort="Chai, Guohua" uniqKey="Chai G" first="Guohua" last="Chai">Guohua Chai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, PR China. ykong@ccrc.uga.edu</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences</wicri:regionArea>
<wicri:noRegion>Chinese Academy of Sciences</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Ruibo" sort="Hu, Ruibo" uniqKey="Hu R" first="Ruibo" last="Hu">Ruibo Hu</name>
</author>
<author>
<name sortKey="Zhang, Dongyuan" sort="Zhang, Dongyuan" uniqKey="Zhang D" first="Dongyuan" last="Zhang">Dongyuan Zhang</name>
</author>
<author>
<name sortKey="Qi, Guang" sort="Qi, Guang" uniqKey="Qi G" first="Guang" last="Qi">Guang Qi</name>
</author>
<author>
<name sortKey="Zuo, Ran" sort="Zuo, Ran" uniqKey="Zuo R" first="Ran" last="Zuo">Ran Zuo</name>
</author>
<author>
<name sortKey="Cao, Yingping" sort="Cao, Yingping" uniqKey="Cao Y" first="Yingping" last="Cao">Yingping Cao</name>
</author>
<author>
<name sortKey="Chen, Peng" sort="Chen, Peng" uniqKey="Chen P" first="Peng" last="Chen">Peng Chen</name>
</author>
<author>
<name sortKey="Kong, Yingzhen" sort="Kong, Yingzhen" uniqKey="Kong Y" first="Yingzhen" last="Kong">Yingzhen Kong</name>
</author>
<author>
<name sortKey="Zhou, Gongke" sort="Zhou, Gongke" uniqKey="Zhou G" first="Gongke" last="Zhou">Gongke Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22708723</idno>
<idno type="pmid">22708723</idno>
<idno type="doi">10.1186/1471-2164-13-253</idno>
<idno type="pmc">PMC3427045</idno>
<idno type="wicri:Area/Main/Corpus">002996</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002996</idno>
<idno type="wicri:Area/Main/Curation">002996</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002996</idno>
<idno type="wicri:Area/Main/Exploration">002996</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa).</title>
<author>
<name sortKey="Chai, Guohua" sort="Chai, Guohua" uniqKey="Chai G" first="Guohua" last="Chai">Guohua Chai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, PR China. ykong@ccrc.uga.edu</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences</wicri:regionArea>
<wicri:noRegion>Chinese Academy of Sciences</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Ruibo" sort="Hu, Ruibo" uniqKey="Hu R" first="Ruibo" last="Hu">Ruibo Hu</name>
</author>
<author>
<name sortKey="Zhang, Dongyuan" sort="Zhang, Dongyuan" uniqKey="Zhang D" first="Dongyuan" last="Zhang">Dongyuan Zhang</name>
</author>
<author>
<name sortKey="Qi, Guang" sort="Qi, Guang" uniqKey="Qi G" first="Guang" last="Qi">Guang Qi</name>
</author>
<author>
<name sortKey="Zuo, Ran" sort="Zuo, Ran" uniqKey="Zuo R" first="Ran" last="Zuo">Ran Zuo</name>
</author>
<author>
<name sortKey="Cao, Yingping" sort="Cao, Yingping" uniqKey="Cao Y" first="Yingping" last="Cao">Yingping Cao</name>
</author>
<author>
<name sortKey="Chen, Peng" sort="Chen, Peng" uniqKey="Chen P" first="Peng" last="Chen">Peng Chen</name>
</author>
<author>
<name sortKey="Kong, Yingzhen" sort="Kong, Yingzhen" uniqKey="Kong Y" first="Yingzhen" last="Kong">Yingzhen Kong</name>
</author>
<author>
<name sortKey="Zhou, Gongke" sort="Zhou, Gongke" uniqKey="Zhou G" first="Gongke" last="Zhou">Gongke Zhou</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Conserved Sequence (genetics)</term>
<term>Droughts (MeSH)</term>
<term>Exons (genetics)</term>
<term>Gene Duplication (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Introns (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (genetics)</term>
<term>Nuclear Export Signals (genetics)</term>
<term>Nucleotide Motifs (genetics)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (genetics)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>RNA-Binding Proteins (chemistry)</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>Stress, Physiological (genetics)</term>
<term>Zinc Fingers (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Doigts de zinc (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Duplication de gène (génétique)</term>
<term>Exons (génétique)</term>
<term>Famille multigénique (génétique)</term>
<term>Gènes de plante (génétique)</term>
<term>Introns (génétique)</term>
<term>Motifs nucléotidiques (génétique)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Protéines de liaison à l'ARN (composition chimique)</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Signaux d'export nucléaire (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Sécheresses (MeSH)</term>
<term>Séquence conservée (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
<term>RNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Nuclear Export Signals</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de liaison à l'ARN</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Chromosomes, Plant</term>
<term>Conserved Sequence</term>
<term>Exons</term>
<term>Gene Duplication</term>
<term>Genes, Plant</term>
<term>Introns</term>
<term>Multigene Family</term>
<term>Nucleotide Motifs</term>
<term>Oryza</term>
<term>Populus</term>
<term>Stress, Physiological</term>
<term>Zinc Fingers</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chromosomes de plante</term>
<term>Doigts de zinc</term>
<term>Duplication de gène</term>
<term>Exons</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Introns</term>
<term>Motifs nucléotidiques</term>
<term>Oryza</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Signaux d'export nucléaire</term>
<term>Stress physiologique</term>
<term>Séquence conservée</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Plant Proteins</term>
<term>RNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Noyau de la cellule</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Droughts</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Structure tertiaire des protéines</term>
<term>Sécheresses</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>CCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X(11)-C-X(6)-C-X(3)-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and responses to drought stress treatment of 12 selected Populus CCCH genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides the first systematic analysis of the Populus CCCH proteins. Comprehensive genomic analyses suggested that segmental duplications contribute significantly to the expansion of Populus CCCH gene family. Transcriptome profiling provides first insights into the functional divergences among members of Populus CCCH gene family. Particularly, some CCCH genes may be involved in wood development while others in drought tolerance regulation. Our results presented here may provide a starting point for the functional dissection of this family of potential RNA-binding proteins.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22708723</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>12</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa).</ArticleTitle>
<Pagination>
<MedlinePgn>253</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-13-253</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">CCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X(11)-C-X(6)-C-X(3)-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and responses to drought stress treatment of 12 selected Populus CCCH genes.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides the first systematic analysis of the Populus CCCH proteins. Comprehensive genomic analyses suggested that segmental duplications contribute significantly to the expansion of Populus CCCH gene family. Transcriptome profiling provides first insights into the functional divergences among members of Populus CCCH gene family. Particularly, some CCCH genes may be involved in wood development while others in drought tolerance regulation. Our results presented here may provide a starting point for the functional dissection of this family of potential RNA-binding proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chai</LastName>
<ForeName>Guohua</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, PR China. ykong@ccrc.uga.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Ruibo</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Dongyuan</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Guang</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zuo</LastName>
<ForeName>Ran</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Yingping</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Yingzhen</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Gongke</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE13043</AccessionNumber>
<AccessionNumber>GSE13990</AccessionNumber>
<AccessionNumber>GSE17223</AccessionNumber>
<AccessionNumber>GSE17230</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D049790">Nuclear Export Signals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049790" MajorTopicYN="N">Nuclear Export Signals</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059372" MajorTopicYN="N">Nucleotide Motifs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016335" MajorTopicYN="N">Zinc Fingers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>06</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22708723</ArticleId>
<ArticleId IdType="pii">1471-2164-13-253</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-13-253</ArticleId>
<ArticleId IdType="pmc">PMC3427045</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Jun 8;498(2-3):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11412848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(8):e2880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2005;5:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1167-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jun;23(11):3798-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2003 Jan;1(4):342-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15239882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):820-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1994 Sep;11(5):725-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7968486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1376-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2004 Mar;11(3):257-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14981510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2004 Sep 29;340(1):111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 15;23(10):1307-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 1998 Jun;54(6):582-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9676577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(4):RESEARCH0016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(1):62-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19402879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19897605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16029-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12461176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Aug;48(8):1148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 9;275(23):17827-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10751406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Mar 15;21(6):719-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 May;19(5):423-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11329010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D363-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18953406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Dec;21(12):3749-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18221561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Sep;18(9):486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12175810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):649-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Jan;18(1):207-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22338-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(6):1077-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(1):28-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17640358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Feb 1;30(3):623-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11809873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Mar;10(3):383-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Dec;132(24):5471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16291783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Nov;3(11):827-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jun;19(6):4311-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2003 Jul 23;3:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12877745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1260-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1742-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Apr 15;15(8):1031-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11316796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Apr;45(4):386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Jun;130(11):2495-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Feb;5(2):190-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20173417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2009;2009:634520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19672455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Apr;10(4):516-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10779491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2002 Nov;30(Pt 6):945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12440952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Mar 29;5:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15050037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Feb 15;166(3):310-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18778873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Oct;13(10):2269-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(22):7138-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16391004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19267902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):4011-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D142-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20630103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Dec;18(12):619-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2007 Jun 30;14(3):103-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cao, Yingping" sort="Cao, Yingping" uniqKey="Cao Y" first="Yingping" last="Cao">Yingping Cao</name>
<name sortKey="Chen, Peng" sort="Chen, Peng" uniqKey="Chen P" first="Peng" last="Chen">Peng Chen</name>
<name sortKey="Hu, Ruibo" sort="Hu, Ruibo" uniqKey="Hu R" first="Ruibo" last="Hu">Ruibo Hu</name>
<name sortKey="Kong, Yingzhen" sort="Kong, Yingzhen" uniqKey="Kong Y" first="Yingzhen" last="Kong">Yingzhen Kong</name>
<name sortKey="Qi, Guang" sort="Qi, Guang" uniqKey="Qi G" first="Guang" last="Qi">Guang Qi</name>
<name sortKey="Zhang, Dongyuan" sort="Zhang, Dongyuan" uniqKey="Zhang D" first="Dongyuan" last="Zhang">Dongyuan Zhang</name>
<name sortKey="Zhou, Gongke" sort="Zhou, Gongke" uniqKey="Zhou G" first="Gongke" last="Zhou">Gongke Zhou</name>
<name sortKey="Zuo, Ran" sort="Zuo, Ran" uniqKey="Zuo R" first="Ran" last="Zuo">Ran Zuo</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chai, Guohua" sort="Chai, Guohua" uniqKey="Chai G" first="Guohua" last="Chai">Guohua Chai</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22708723
   |texte=   Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22708723" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020